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EFFECT OF HALL CURRENTS ON THE FLOW OF A CONDUCTING GAS AT

HIGH FLOW VELOCITIES

G. M. Bam-Zelikovich
Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki,

In [1] the flow of a compressible fluid was examined for the case
when the conductivity o = « with account for the Hall effect. Oates
[2] solves the problem of the influence of Hall currents on the flow in
an accelerator for channels having a very small ratio of height to
length when the velocity component in the direction of the channel
height may be assumed to be zero. The problem of the influence of
Hall currents on the flow of a conducting gas of finite conductivity is
solved below for the case when the gas is accelerated to high veloci-
ties (~50-100 km/sec) with account for the presence of two veloc-
ity components. -

§1. We shall consider the steady flow of a conduc-
ting gas in a channel of rectangular shape and con-
stant cross section. We direct the x axis along the
channel axis, the y axis in the direction of its height,
and the z axis perpendicular to the side walls. Our
basic assumptions are as follows.

1. The external magnetic field has one component
directed along the z axis whose strength H, = H (x)
may depend on x. Strictly speaking, for H # const
the component Hy will also be nonzero, equal in
order of magnitude to Hy ~ (zy/L)AH, where z, is
the channel width, L its length, and &H the charac-
teristic magnitude of the variation in H. In what
follows we shall assume that either AH< H
or zy/L< 1,In both cases H,<<H , so that the com-
ponent of the magnetic field along the x axis may
be neglected.

2. The magnetic Reynolds number Rn<<€1; in
comparison with the external field, the induced mag-
netic field may be neglected.

3. The effect of viscosity may be neglected

4. A potential difference which varies along the
length of the channel ¢(x)is applied to its upper
and lower walls, but is such that the component
of the external electric field along the x axis is
small in comparison with the component along the
y axis.

5. The distortion of the electric field at the
channel boundaries has little effect on the gas mo-
tion in the region of the channel under consider-
ation.

6. The conductivity o is constant in the flow
region considered; the quantity k = w 7 is also
constant, where wis the cyclotron frequency of
electron gyration, and 7 is the free time for an elec-
tron. We shall also assume that the quantity k is
not very small (Hall currents are significant), but
still k <1, so that 1 +k% =1 (for example, k ®0.1—
—0.3).

7. The motion may be considered two-dimension-
al, i.e., the boundary conditions are such that all
the required quantities are independent of the z
coordinate.
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8. The gas is perfect and obeys the Clapeyron
equation of state.

9. Everywhere in what follows we shall consider
acceleration in strong magnetic fields, when the
characteristic velocity values attain magnitudes of
the order u ~5-108/107 ¢m/ sec.

With these assumptions, one may neglect the
pressure gradient in comparison with the momentum
terms in the equations of motion.

In fact, assuming that in the process of motion
all variables change by an order of magnitude and
making an order-of-magnitude estimate of the
termsin the component of motion along the x axis,
we have

D:' [puu,’ ~ RT [u?,

Here p is the pressure, p the density', T the tem-~
perature of the gas, u the velocity component of the
gas on the x axis, and R the gas constant.

For many gases and alkali metal vapors at ve-
locities u such as we are considering, this ratio has
a value of the order 0.001 and less, even for tem-
peratures T ~ 10%° K.

An estimate of terms in the y component of the
equation of motion gives

Py [puvy’ ~ (RT [u®) (L*] yo7) .

Here v is the y component of the gas velocity and
vg the channel height. In deriving this relation it is
assumed that v/u ~ y,/L. For a channel length
5-10 times greater than its height, and the same
flow parameters as above, the right-hand side
equals 0.025-01.

In the case under consideration, Ohm's law has
the form (see, for example, [3])

j=c(E+VxH/c)—k(jx H)/H.

Here j is the current density, E the electric
field strength, H the magnetic field strength, V the
flow velocity, and c the speed of light in a vacuum.

Solving for the current density components on
the x and y axes and taking into account the as-
sumptions made above regarding the electric and
magnetic fields, we obtain

ja=1[o/(1 +F ) [Es+vH[c—k(Ey,—uH[c)], (1.1)
Ju=1[6/(1 + k)] (E, —uH [c + k(E; +vH/[c)]. (1.2)

The equation of continuity of electric current
Bjx/ ox + 6jy/ &y = 0 then gives

B+ (H[) o —uy + k@ +2,)1=0. (1.3)
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Here Ey = E, and the primes and subscripts denote
partial derivatives. In deriving (1.3) we took into
account the fact that rot E = 0, and also that in view
of the suppositions which have been made, 8E / oy~
~ (vo'/ L% 6E/ 8y and that consequently (SEX/GX may
be discarded as a small quantity. With account for
the estimates made, the equations of continuity and

motion assume the form

(pu)x' + (0v), = puuy' + pvuy’ = Hj, [c,
puv,’ + pvw, = — Hj, [ c. (1.4)

The system of equations (1.1)~(1.4) is a closed
system of six equations in six unknown functions #,
u, v, E, jgx and jy.

We can take boundary conditions for the system in
the following form: at a certain cross section 7 = 0

where the Hall currents do not yet exert any influence,

all the parameters may be regarded as given:

= ug =const, v=10, p=pyp=const at ==0. (1.5)

In addition, on the upper and lower walls,we have
'!‘lu
©=0 aty—oandy=y, \ZEdy—g¢(@. (1.6)
0
The last condition expressesthe fact that the
potential difference between the upper and lower
channel walls is a given quantity.

System (1.1)-(1.4) may be solved, in the general
case, by numerical methods only. Thus, we will seek
an approximate solution, expanding all the required
quantities in series in powers of k, and confining
ourselves to terms linear in k. We set

U= U+ kuy, v=vy+ kv,

p=po+kpr, L =FEy+kE;. (1.7)
Without carrying out the calculations, we can
make some general observations about the flow pat-
tern in the case under consideration. In the absence

of Hall currents (k = 0) the motion in the channel
would be one-dimensional, given our assumptions.
Hall currents lead to the appearance of a force, di-
rected along the y axis and acting on all the gas par-
ticles. This force brings about motion in the direc-
tion of the y axis. Estimates made above show that
in the case considered the particle velocity in the
direction of the y axis will be supersonic.

Since we are neglecting viscous effects, the gas
particles that acquire a velocity in the direction of
the y axis break loose from the lower wall, where
a region of vacuum develops. As a result of vis-
cosity and diffusion effects, there will not be a com-
plete vacuum under real conditions, but there will
be a zone of extremely low density. We may thus
assume that this zone will have finite conductivity.

Braking from supersonic velocity to v =0
should occur at the upper wall of the channel. Thus
a compression shock will arise at the upper wall.
Therefore, the channel flow separates into three
zones in the case under consideration: vacuum zone
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at the lower wall, a core flow in the channel, and a
zone behind the compression shock at the upper wall.

If yo — y! is the height of the zone behind the com-
pression shock, then one may writey, — y! = yl + kyﬂ,
as in (1.7). However, in the absence of Hall currents
k = 0, there is no shock, i.e., y,! = 0. Such consid-
erations are also valid for the height of the vacuum
zone at the lower wall. We may thus conclude that
the ratio of heights of the vacuum zone and the zone
behing the compression shock to the channel height
must be of the order of k.

2. We shall consider the flow in the core of the
stream. Since ug, vy, My, Ey are the values of the vari-
ables in the case when there are no Hall currents
k = 0 and the motion in the channel is one-dimension-
al, vy = 0 and uy, P and E; can depend only on x.
Noting this, we substitute expression (1.7) in (1.3),
(1.4), having previously eliminated jy and jy, and
also in the boundary conditions (1.5), (1.6). Equa-
ting terms with like powers of k, we obtain a sys-~
tem of equations for determining the magnitudes of
the zero-th and first approximations

ve = 0, Uy, =0, Sy =0
(0u80)x = 0, Peligltge = (sH [y (F,—u i [c), (2.1)
Yo
Ug ==y, Po=pPo0 at z=0, &L dy = ¢ (2),(2.2)
[}

{(oo1 + prlto)y” — (Oov1) =0,

(0,81 + P1lto) gy + 0ottty = (sH [ ey (1 — Huyje),

Potlatsy’ = — (H [ ) (Hvy fe— Iy 4 Hu, [ ¢},
Iy - (H o) (v —uy, +uy) =0y {(2.3)
”
uy =90, =0, pp=0 at x=q, \ Iydy==0.(2.4)

)

Here the integral of E, is taken over the whole
height of the channel, and not over the height of the
core only. This may be done with the degree of ac-
curacy assumed, since the height difference between
the core of the flow and the whole channel will be of
the order of k, as was pointed out above. However,
integral (2.4) is itself a coefficient in the term of
order k in the series expansion of integral (1.6).
Thus, changing the limits of integration leads to a
correction of the order of k? only, i.e., to a cor-
rection of such an order as we everywhere neglect.

Integrating equations (2.1) and taking conditions
{2.2) into account, we find

Eoch/yo,

Polto = Loollgo,

o= ¢ fugg + \ Hoed mau}

4 Doouooyu

G
C?‘Poa’tnu

Afx) =

Hdz | (2.5)

e Y R

The system of equations (2.3) for functions of the
first approximation is a system of four linear
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first order partial differential equations. Its solu-
tion may be reduced to the calculation of quad-
ratures.

We substitute the expressions for uy, £ and E; in
the third equation of (2.3). This turns out to be a
linear equation in the unknown function vy, not con-
taining the derivative Viy the coefficients of this
equation depend on x only. Integrating over x and
taking v; = 0 for x =0, we obtain

§H2uoeA (x)dx}, (2.6)

— p—A (X)
V= ¢ ——
! { c2pgotton

1]

SHcpeA ©de —

CPootiooYo
0

It is clear from expression (2.6) that vy is a func-
tion of one variable x only. Taking this into account,
we find from the first equation of (2.3)

Pty + Pty = 0 P1 = — Poléy / Uy , (2.7)

Boundary conditions (2.4) for uy and #; were used
in deriving formulas (2.7). Eliminating p; from
the first and second equations of (2.3), we obtain a
system of two partial differential equations of the
first order for determining the unknown functions
uy and E1

, G g s
u = HE
1+ Foootics By eovaey ALy

£y — ciulu' = —‘t‘ H (o1 + w)s, (2.8)

Here vy,uy and H are known functions of x.
We differentiate the first equation with respect
to y and substitute Ely' from the second equation into

the relation thus obtained
urcv/ = — 0ol (v, + uo) ! Poothop «

Integrating this equation twice with respect to x
and y, and taking conditions (2.4) into account, we
calculate uy, after which we find E; from the first
equation of (2.8)

H?(vy + uy), dz -+ @ (),

A
c2poatton o
0

E1= o, + CPoouno xr . (2_9)

Here & (x) is an arbitrary function of x with
& (0) = 0, since uy = 0 for x = 0. The function &(x) is
determined from the last equation of (2.4). We set uy
in the expression for E; and integrate over y from
zero to y =y,. Since the left-hand side vanishes, we
thus obtain an ordinary linear differential equation
in & (x)

o+ 0=

€*Pootop

.

e K H? (0y + wo)e da -+ H (o1 + )},

2e*poottoo | c2poatton
b

whence, considering that & (0) =0,

x x
A ([ sHE ¥
202900“00 \ {Czponuoo\ (2 + mo)y" dz +
0 0
+ H? (o, 4 u,,)x'} A g (2.10)

Formulas (2.5)-(2.10) give a solution of the prob-
lem posed for an arbitrary dependence on x of the
magnetic field H and the potential difference ¢ on
the electrodes. If H = const and ¢ = const, the in-
tegrals in formulas (2.5)—(2.10) may be evaluated.

Without going through the calculations, we cite

the formulas for this case

Ugl Ugg = 1 + U (1 — =) + kU (0.5y,* — y*) x

X (z¥e =" — v/ ugy = kUz*e~",

e + 1),
Ec/ Huy =1 + U + kU (0.5y,* — y*) (e + 1),
A =0HAL | cPpyttoy, U= —1 4 qc/ yHug,

*=hx/L, y* =M /L,  y*=Myp!/L. (2.11)

Formulas (2.11) show that when Hall currents are
present the component of velocity on the x axis u is
greater in the lower half of the channel y <0.5y;, and
less in the upper half than when Hall currents are ab-
sent (for k = 0). Increase of velocity u leads to the
appearance of a stronger electric field E in the lower
half of the channel. The velocity component on the y
axis in the presence of Hall currents turns out to be
constant over the channel cross section in the first
approximation. At first, it increases along the length
of the channel, reaching a maximum at the cross
section x/L = 1/A, and then decreases. The quan-
tity max v = kugUe~! does not depend on A . The
function v (x/L) is shown in Fig. 1 for different
values of A ; here V*= v/kuooU. It is clear from
(2.11) and Fig 1 that for A =1, the cross section
where v reaches a maximum lies inside the channel,
and for A <1, outside it. The larger A, the more
rapidly the value of v changes. In order to explain
this behavior of v we shall consider the electric
current flow in the channel. Rejecting small higher-
order terms, we have from formulas (1.1) and (1.2)

jy=o(E—uH/[cd), jx=oclvH[c—k(E—uH/[c)].(2.12)

Substituting the values for E, u, and v from (2.11)
in these formulas, and retaining only the lowest-or-
der terms we obtain

jy = (cHuy [ c) Ue™=",
ju = (cHugy [ €) kU (2¥ — 1) =", (2.13)
Hence we have the differential equation for the

electric current lines and the lines of electric current
themselves (X* is the value of x* for y* = 0):

do* [ dy* = j, [ jy = k (=% — 1),
|z — 1] = [ X* —1|etv . (2.14)
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The pattern of electric current lines calculated
from formula (2.14) for A =4, k =0.2 and v,/ L = 0.3
is shown in Fig. 2. It follows from formula (2.13)

and Fig. 2 that jy is positive for x* > 1 and negative for

x* < 1. Since x* = 3x/L, the cross section where

jx changes sign lies inside the channel for A > 1.
This is connected with the fact that at first v = 0
and Jx €0, as is clear from (2.12). For large A (i.e.,
in the case of strong magnetic fields) the velocity
along the axis u rapidly attains values close to max
u. E — uH/c then becomes a small quantity, less
than vH/c. It is clear from formula (2.12) that

in this case jx > 0. Change of direction of the elec-
tric current component on the x axis leads to a
change of direction of the force acting along the y
axis. Thus, beginning from the cross section

x*=1, v, the component of velocity on the v axis,
will decrease. x* < 1 everywhere in the channel for
A < 1. Thus, for A <1 the velocity v increases mono-
tonically along the whole channel.

Fig. 1

With an accuracy to terms of order k the dif-
ferential equation for current lines in the flow
core has the form

dy*jde* =v/u=kUz* [(1 +U)e* —UT?t.

Hence, on integrating, we have

x*

y*:Y*Jr-kUS__..Z_'__dx*

U+t —vu (2.15)

0

where Y*is the value of y* on the initial cross sec-
tion for the current line under consideration. It fol-
lows from (2.15) that in the first approximation the
current lines may be obtained one from the other by
a shift along the y axis.

Figure 3 shows the form of the current lines in the flow core cal-
culated from formula ( 2.15). The solid curve gives the form of the
current lines for very large values of U (this corresponds to small
values of ugp in comparison with the maximum velocity). The cur-
rent line for U = 1 is shown by the broken curve.

3: We shall now consider the flow behind the com-
pression shock which forms at the upper wall of the
channel. Since the core flow is known, the flow prob-
lem close to the upper channel wall is similar in the
case under consideration to the problem of highly
supersonic flow past a body, and may be solved by
the methods used in this case [4] .

Two circumstances allow the solution of the prob-
lem to be simplified considerably. First of all, esti-
mating the magnitude of v, the velocity component
on the y axis behind the shock, we obtain

19
v/u~o—y)/L~hky, /L. (3.1)

Here y! is the coordinate of the shock. Since the
magnitude of the ratio yo/L ~0.1~0.3, i.e., of the
order k, it follows from (3.1) that v/u ~k? behind
the shock, and we may assume that behind the
shock v ® 0 with the assumed degree of accuracy.
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/
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Fig. 2

Secondly, as was pointed out above, RT/v? may
be of the order 0.025-0.1 in the flow core, Wewill
therefore examine below in detail the case when
the velocity component along the normal to the
shock uy is much greater than the velocity of sound.
We may then assume approximately [4]

/0= (x k) (v —1), w /= (x—1) [ (x +1). (3.2)

Here Kis the ratio of specific heats, o the den-
sity behind the shock, »° the density in the flow
core in front of the shock, un1 the normal velocity
component behind the shock and up® in front of the
shock. If the gas is totally ionized, then it may be
assumed that k¥ does not change on passing through
the shock.

u,° designates the velocity component in the flow
core tangential to the shock, u,,.1 the tangential veloc~
ity component behind the shock, « the angle of inclin-
ation of the shock to the upper channel wall (Fig.4).
Then the equations

w=ulcosa -+ ulsing, o= —ulsina -+ u,lcosa (3-3)
u,=ucosee—vsina, U, = usin® +veesa (3.4)

are valid.

Since in our case vl =0, it follows from the sec-
ond equation of (3.3) that

tga=u,l/ut=u, u," = [(x— 1)/ (% + DI, /u.". (3.5)
51"‘}/*; .
S %4[/

0 ; // T

L

a5 7

S
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Fig. 3

Here we have used the relation (3.2) and the fact
that the tangential velocity component does not
chang . its value on passing through the shock, i.e.,
ur! =u;°. Substituting the expressions uy” and u.®
from (3.4) in (3.5), we obtain an equation for deter-
mining tg a:

Crgta—2@tge) /(w1 + (x—10°/ (+ 1) =0
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where v° and u® are the velocity components on the
y and x axes in front of the shock. Hence

tga=u®/v°(n+ 1)+
/e 1P —(—1)/(x+ D). (3.6)

Since u° /v° ~ 1/k is a very large quantity, the
plus sign must correspond to an almost normal
shock almost perpendicular to the upper wall of the
channel. This has no physical meaning in relation
to the problem of plasma acceleration by strong
magnetic fields. Thus, the minus sign must be taken
in equation (3.6). Confining ourselves to terms of
order k, we find from (3.6) and (3.4)

tgo = (x—1)v°/2u°, w=ul=u=u". (3.7)

Fig. 4

Equations (3.2) and (3.7) allow us to determine
the plasma parameters behind the shock from known
values of the parameters in front of the shock, and
also the angle of inclination of the shock. The cur-
rent lines behind the shock are, with the degree of
accuracy assumed, straight and parallel to the
channel wall (since v! = 0). Thus behind the shock
the equations of continuity and motion assume the
form

(pu)y =0, puu, = Hjy[c. (3.8)

Integrating the first equation and taking (3.2) and
(3.7) into account, we obtain pu = p'ul = + 1)/ (-
—1)lp°u°. In this equation p° and u® are the values
of density and velocity in the flow core in front of
the shock at the point where the current line in
question intersects the shock. Expanding f° and u®
in series in powers of k and considering equa-
tions (2.5) and (2.7), we obtain, with an accuracy
to terms of order k2,

P°u° = Poollgos pu = [(# - 1) [ (¢ —1)] poolioo -  (3.9)

02 4 o8 z”
¢ R Sy
R Ry it
S g e
Fig. 5

We now note that the current j,, in the second
equation of (3.8) is a quantity known correct to terms
of order k? , which can be calculated from the flow
parameters in the core. Actually, from the con-

tinuity equation for electric current we have for jy
behind the shock

. . aj
jy =i —\ = dy, (3.10)

where j31; is the value of jy for y = yi.

However, it follows from (1.1) that ajx/ax is ofthe
order of k, and since the inteval of integration be-
hind the shock is also of order k, the integral on the
right-hand side of (3.10) will be of order kz, and we
may take j, = j1 with the assumed degree of ac-
curacy. Considering this and also (3.9), we find the
flow velocity in the zone behind the shock by inte-
grating the second equation of (3.8)

%—1 ¢ .
u=u1—|—mXH]udx_ (3.11)
i

Formulas (3.7), (3.9), and (3.11) give the distri-
bution of flow parameters behind the shock and the
angle of inclination of the shock for arbitrary de-
pendence on x of the magnetic field strength H and
potential difference ¢ . In the case when H and ¢
are constant, we easily obtain the form of the shock
from the first equation of (3.7), since dy! /dx = —tga.
Setting u® and v° from (2.11) in (3.7), discarding
terms of order k? and integrating over x, we obtain

x*

—1 ‘ r¥dx®
1% ()>X<__]/M S
Yo =yt — ks §(1+-U)e““*—U’
A A
AR A (3.12)

The form of the shock, calculated from (3.12), is
shown in Fig. 5, where

2
M=% W — .

The continuous curve is for U = 3, the broken

" curve for U =8.
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Setting the values for E and u from (2.11) in (1.2),
and discarding terms of order k2, we find for the
current density jy behind the shock

Ju= (6Hug [ ) Ue" {1 —0.5 ky™ (2 —x*)],

Using this‘expression for j.,, we now determine
the velocity from (3.11)



J. APPL, MECH., AND TECH, PHYS, NUMBER 3

2@ ) [too = 1+ U (1 — )
— 2/ (x4 DU [ ® — "1 0.5k0
Xy (=) e —

— 12 (% D[ — 2¥) e o (1 — ) e W]y,

where x'*(y) is the value of x at which the current
line y = const intersects the shock. This value of
x*(y) is calculated from formula (3.12). With the
help of (2.11) the formula for the velocity behind
the shock may be transformed to

ulz,y) =ule, yt ()] — 2/ (. + D] x
X {ulz, y* (@] —u lz* (y), yI} (3.13)

Hence the velocity on any current line behind the
shock is less than the velocity in the flow core in
front of the shock, by an amount equal to the dif-
erence between the velocities in the core in front of
the shock in the channel cross section under consid-
eration and in the cross section where the current
line intersects the shock, multiplied by 2/ + 1).

Figure 6 shows the profile of u, the velocity com-
ponent on the x axis, calculated for the core flow
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from formula (2.11) and behind the shock from
formula (3.13). The curves correspond to values of
the parameters x*=1, k = 0.2, yo*= 0.3, K=/,

U = 3 (continuous line) and U = 8 (broken line). The
ratio of u, the velocity at a given point, to uy, the
velocity on the channel axis, is marked off on the
abscissa axis, and on the ordinate axis the ratio of
the y coordinate to the channel width y;. The point
of discontinuity of the curves corresponds to the co-
ordinate of the shock in the channel cross section
under consideration x*= 1.
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